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Abstract

Objective: Protein phosphatase 2A (PP2A) is a heterotrimeric holoenzyme

composed of a catalytic C subunit, a structural A subunit, and one of several

regulatory B subunits that confer substrate specificity. The assembly and activity

of PP2A are regulated by reversible methylation of the C subunit. a-Synuclein,
which aggregates in Parkinson disease (PD) and dementia with Lewy bodies

(DLB), is phosphorylated at Ser129, and PP2A containing a B55a subunit is a

major phospho-Ser129 phosphatase. The objective of this study was to investi-

gate PP2A in a-synucleinopathies. Methods: We compared the state of PP2A

methylation, as well as the expression of its methylating enzyme, leucine car-

boxyl methyltransferase (LCMT-1), and demethylating enzyme, protein phos-

phatase methylesterase (PME-1), in postmortem brains from PD and DLB cases

as well as age-matched Controls. Immunohistochemical studies and quantitative

image analysis were employed. Results: LCMT-1 was significantly reduced in

the substantia nigra (SN) and frontal cortex in both PD and DLB. PME-1, on

the other hand, was elevated in the PD SN. In concert with these changes, the

ratio of methylated PP2A to demethylated PP2A was markedly decreased in PD

and DLB brains in both SN and frontal cortex. No changes in total PP2A or

total B55a subunit were detected. Interpretation: These findings support the

hypothesis that PP2A dysregulation in a-synucleinopathies may contribute to

the accumulation of hyperphosphorylated a-synuclein and to the disease pro-

cess, raising the possibility that pharmacological means to enhance PP2A phos-

phatase activity may be a useful disease-modifying therapeutic approach.
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Introduction

Protein phosphorylation is a tightly regulated posttransla-

tional modification that impacts nearly all cellular pro-

cesses. A balance is normally maintained through the

actions of multiple kinases and phosphatases. Protein

phosphatase 2A (PP2A) is a ubiquitously expressed con-

served enzyme, with its catalytic C subunit constituting

up to 1% of total cellular proteins, and accounts for the

majority of serine/threonine phosphatase activity in the

brain.1,2 In neuronal cells, most of the C subunit is asso-

ciated with a conserved scaffold-like A subunit, and one

of several different regulatory B subunits that confer dif-

ferent substrate specificities on the resulting trimeric

holoenzymes. The binding of different B subunits to the

AC dimer is regulated by reversible carboxyl methylation

of the C subunit.3–5 Thus, PP2A methylation is critical

for its selective phosphatase activity toward different

phospho-protein substrates. The methylation status of

PP2A is governed by the opposing activities of a PP2A-

specific leucine carboxyl methyltransferase (LCMT-1) and

a PP2A-specific methylesterase (PME-1).6–8

a-Synuclein is an abundant protein in the brain that

misfolds and polymerizes into fibrillar form in Lewy bod-

ies and Lewy neurites, which are pathologic hallmarks of

a-synucleinopathies such as Parkinson disease (PD) and

dementia with Lewy bodies (DLB).9 a-Synuclein is

extensively phosphorylated at Ser129 in PD and DLB

brains.10–12 Additionally, hyperphosphorylated and mis-

folded a-synuclein accumulates in neurons of transgenic

mice that express human a-synuclein,11,13 and hyperphos-

phorylation exacerbates a-synuclein toxicity in Droso-

phila.14 In vitro, phosphorylation of a-synuclein at Ser129
promotes its oligomerization and fibrillization.10

We demonstrated previously in in vitro experiments

and in cultured neuroblastoma cells that the main enzyme

that dephosphorylates a-synuclein is the B55a containing

isoform of PP2A.13 We also identified a naturally occur-

ring serotonin derivative in coffee, eicosanoyl-5-

hydroxytryptamide (EHT), that inhibits PME-1-depen-

dent PP2A demethylation, thereby stabilizing the PP2A

heterotrimeric holoenzyme AB55aC that dephosphorylates

a-synuclein. a-Synuclein transgenic mice maintained on a

diet supplemented with EHT exhibited dramatically

reduced a-synuclein phosphorylation and aggregation in

the brain, accompanied with enhanced neuronal integrity

and reduced neuroinflammation as well as improved

motor performance.13

Based on these preclinical observations, we hypothe-

sized that alterations in PP2A methylation may contribute

to the pathology of human a-synucleinopathies.,15 partic-

ularly in light of decreased PP2A activity reported in the

brains of individuals with DLB and a-synuclein triplica-

tion.16 Abnormal regulation of PP2A has been noted in

another neurodegenerative disorder, Alzheimer’s disease

(AD), with decreased phosphatase activity and reduced

PP2A methylation in postmortem brains.17,18 Further-

more, PP2A has been shown to be the major phosphatase

acting on phospho-tau,15 and EHT ameliorates the neu-

rodegenerative phenotype in a rat model of AD.19

This study examines the state of PP2A methylation in

postmortem brains of patients with PD and DLB as well

as the expression of the two enzymes that control PP2A

methylation, LCMT-1, and PME-1. The results show

robust abnormalities compared to control brains consis-

tent with compromised PP2A activity that can contribute

to an abnormally elevated phosphorylation state of

a-synuclein in these disorders.

Materials and Methods

Brain samples

Human postmortem brain tissue sections that were fully

characterized clinically and neuropathologically were

obtained from the Banner Sun Health Research Institute

Brain and Body Donation Program of Sun City, Ari-

zona.20 Deidentified samples from eight subjects in each
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of the diagnostic groups consisting of Parkinson disease

(PD), dementia with Lewy bodies (DLB), and non-neuro-

logical controls (Controls) were studied (Table 1). The

three groups were age-matched with mean age at death of

79 � 2.8 years for PD cases, 82 � 2.6 years for DLB, and

84 � 2.1 years for Controls (not significant). Gender dis-

tribution was equal for both PD and DLB cases, while the

Control group included five males and three females.

Only one PD case had a positive family history of tremor.

Family history among DLB cases included two AD, two

others dementia, and one tremor. All PD cases were

tested for glucocerebrosidase (GBA) and LRRK2 muta-

tions; three were found to have GBA mutations, and one

had LRRK2 mutation. None of these GBA or LRRK2

mutants had positive family history. Postmortem interval

(PMI) was ≤3 h in all but one PD subject. United Parkin-

son Disease Rating Scale (UPDRS) motor scores in the

“practically-defined off state” in all but three subjects

were 39.4 � 8.5 for PD, 35.7 � 11.4 for DLB, and

10.4 � 4.3 for Controls (P < 0.05 for difference between

PD and Controls). Mean Mini-Mental State Examination

scores were 18 � 3.6 in the PD group, 8.8 � 3.1 in DLB

and 27.1 � 0.8 in Controls (P < 0.01 for difference

between DLB and Controls). Lewy bodies were detected

in PD and DLB brains but in none of the Controls. Neu-

ropathological stage of a-synucleinopathy assigned

according to the Unified Staging System for Lewy Body

Disorders 21 showed all DLB cases to be in stage 4, PD

cases ranged from stages 2 to 4, and all the Controls were

in stage zero. All PD-affected brains had severe depigmen-

tation of the substantia nigra, while those with DLB had

mild to moderate depigmentation, and all but one Con-

trol had no or mild depigmentation.22 Concomitant Alz-

heimer pathology was also present. Mean neuritic plaque

density determined according to the Consortium to

Establish a Registry for Alzheimer’s Disease (CERAD) 23

was 1.0 � 0.3 for PD, 2.8 � 0.2 for DLB, and 1.0 � 0

for Controls (P = 0.001 for difference between DLB and

Controls, and P < 0.01 for PD vs. DLB), and neurofibril-

lary tangles assessed using Braak staging 24 showed mean

scores of 2.9 � 0.4 for PD, 4.5 � 0.3 for DLB, and

2.8 � 0.2 for Controls (P = 0.01 for difference between

DLB and Controls, and P < 0.05 for PD vs. DLB). Demo-

graphic and neuropathological details are provided in

Table 1.

Immunohistochemistry

For immunohistochemical analysis, 40 lm free-floating

formalin-fixed sections of the substantia nigra and middle

frontal gyrus of the cerebral cortex stored at 4°C were

used. After washing with phosphate-buffered saline (PBS),

tissue sections were incubated in 3% hydrogen peroxide

for 10 min to inhibit endogenous peroxidase activity. To

enhance epitope antigenicity, samples were incubated in

preheated sodium citrate (pH 6.0) for 30 min at 75°C.
Sections were then blocked using 5% BSA for 1 h at

room temperature and incubated overnight at 4°C with

the following primary antibodies: antibody for LCMT-1

(also known as PPMT) (1:100, a kind gift from Egon

Ogris)17; 07-095 for PME-1 (1:500, Millipore); 6A3 for

methylated-PP2A (1:200, generated at Princeton Univer-

sity)4; 1D6 for demethylated-PP2A (1:1000; Millipore)25;

06-222 for total PP2A C subunit (1:500, Millipore); and

2G9 for total B55a subunit of PP2A (1:500, Millipore).

Sections were washed with PBS-Tween (PBS-T) three

times and incubated with biotinylated secondary antibody

for 1 h. After washing again with PBS-T, sections were

incubated with biotinylated HRP complex (Vector Labo-

ratories, Burlingame, CA) for 1 h at room temperature,

followed by incubation with 3,30-diaminobenzidine

(DAB) for color development. Hematoxylin-stained adja-

cent sections of the substantia nigra (SN) were used to

count neuromelanin-containing neurons. All samples

across different diagnostic groups were stained under the

same conditions. For image analysis, tissue sections were

observed under a Nikon Eclipse 55i light microscope,

images were captured using NIS-Elements D software

(Nikon), and the area occupied by immunoreaction in

each image was quantified using the thresholding tool in

ImageJ (NIH, Bethesda, MD). The mean areas for each

disease group were then compared to that of the Control

group. Signals in the SN were normalized against the den-

sity of residual neuromelan-containing neurons.

Statistical analysis

GraphPad Prism (GraphPad Software, San Diego, CA)

was used for statistical analysis and graphic representa-

tion. Data are presented as means � SEM. Differences

among the three groups in the levels of LCMT-1, PME-1,

methylated PP2A, demethylated PP2A, total PP2A, and

B55a were analyzed using one-way analysis of variance

(ANOVA) with post hoc Bonferroni’s multiple compar-

ison test. Differences in clinical and demographic charac-

teristics (age, Mini-Mental State Examination,

postmortem interval, motor UPDRS, Braak stage, and

neuritic plaque density) were analyzed using Kruskal–
Wallis ANOVA with post hoc Dunn’s multiple compar-

ison test. P < 0.05 were considered statistically significant.

Results

A marked decrease in the area occupied by immunoreac-

tion for the PP2A methylating enzyme LCMT-1 was

found in the SN of both PD and DLB brains, and a lesser,
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but still significant, decrease was detected in the cortex of

both diseases in comparison to Controls (Fig. 1). In SN,

LCMT-1 immunoreaction was decreased by 63% in PD

(P < 0.0001) and 55% in DLB (P < 0.0001), while in the

cortex, this was reduced by 30% in PD (P < 0.01) and by

28% in DLB (P < 0.01) compared to Controls. Con-

versely, the demethylating enzyme PME-1 was elevated in

the SN in PD (P < 0.01) but not in DLB, and a trend to

increased levels was noted in cortex in both disease

groups (P = 0.05 for a 76% increase in PD vs. Controls;

P = 0.17 for a 60% increase in DLB vs. Controls) (Fig. 2).

As LCMT-1 and PME-1 signals were normalized against

the number of residual melanized neurons, and PME-1

expression is increased in the SN, these findings indicate

that the observed decrease in LCMT-1 expression in SN

(Fig. 1) is not explained by the loss of dopaminergic neu-

rons. Additionally, the marked decrease in LCMT-1 in

the SN of both PD and DLB, despite only mild to moder-

ate depigmentation in the latter, also suggests that

neuronal loss cannot adequately account for the decrease

in LCMT-1 expression in these conditions.

In agreement with the robust decrease in LCMT-1

expression in the SN of both PD and DLB brains, and

increased PME-1 expression in PD, methylated PP2A

expression was markedly down-regulated in SN in both

conditions compared to Controls (Fig. 3). Methyl-PP2A

was reduced by 70% in PD (P < 0.001) and by 73% in

DLB (P < 0.0001) (Fig. 3A–D), while no significant dif-

ferences were detected in the levels of demethylated PP2A

(Fig. 3E–H). Total PP2A expression (Fig. 3J–M), and

total B55a subunit levels were no different among the

three groups (Fig. 3N–Q). The finding that the propor-

tion of methylated PP2A out of total PP2A is decreased

by 60% in PD (P < 0.01) and by 65% in DLB SN

(P < 0.001) compared to Controls (Fig. 3D) indicates

that the catalytically active form of PP2A is diminished

due to a decrease in its methylating enzyme LCMT-1

(Fig. 1), with contribution from increased expression of

Table 1. Postmortem brain tissue samples, and the clinical and neuropathologic profile of study subjects.

Group Gender

Age at

Death PMI

Motor

UPDRS

MMSE

Score

Unified

LB Stage

SN

depigmentation

Plaque

density

Braak

score

Non-neurological Controls

1 Male 81 2.75 6.5 25 0 None 1 III

2 Female 90 3 13 27 0 Moderate 1 III

3 Male 85 1.83 6 30 0 None 1 II

4 Male 82 3 0 26 0 Mild 1 III

5 Male 82 2.16 28 0 Mild 1 III

6 Male 73 2.5 4 30 0 Mild 1 II

7 Female 88 2 34.5 24 0 None 1 III

8 Female 91 2.5 9 27 0 None 1 III

Parkinson’s Disease

1 Female 73 2.16 78 19 4 Severe 1 III

2 Male 70 1.83 30.51 8 3 Severe 0 III

3 Male 85 2 121 28 3 Severe 2 IV

4 Female 82 3 381 16 3 Severe 1 III

5 Male 78 2.5 37 19 2 Severe 0 III

6 Male 69 2.25 74 0 4 Severe 1 II

7 Female 87 2.16 24 28 3 Severe 1 I

8 Female 89 3.66 22 27 2 2 IV

Dementia with Lewy Bodies

1 Female 76 3 10 4 4 Moderate 2 IV

2 Female 80 2.33 0 4 Moderate 2 III

3 Male 69 2.5 79 0 4 Moderate 3 V

4 Male 86 2.83 47 10 4 Moderate 3 IV

5 Male 88 2.16 8 26 4 Mild 3 IV

6 Female 82 2.66 72 5 4 Moderate 3 V

7 Female 92 2.5 12 15 4 Mild 3 VI

8 Male 86 2.3 22 10 4 Moderate 3 V

PMI, postmortem interval; UPDRS, United Parkinson Disease Rating Scale, Motor subscale; MMSE, Mini-Mental State Examination; Unified LB

Stage, Unified Staging System for Lewy Body Disorders: 0 = stage 0 (no Lewy bodies); 2 = Stage IIa (Brainstem predominant) and Stage IIb (Lim-

bic predominant); 3 = Stage III (Brainstem and Limbic); and 4 = Stage IV (Neocortical). SN = substantia nigra pars compacta. CERAD neuritic Pla-

que Density scores are 0 = none; 1 = sparse; 2 = moderate; 3 = frequent. Braak score staging is for neurofibrillary tangles.
1These subjects were evaluated with the Motor UPDRS in the “ON” state; all other subjects were evaluated off antiparkinson drugs.
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the methylesterase PME-1 (Fig. 2). As all these analyses

are normalized against the number of neuromelanin-con-

taining neurons, the decrease in LCMT-1 expression rep-

resents a pathologic marker and not a reflection of

dopaminergic neuronal loss in these conditions. Further-

more, the pathologic imbalance of the methylation state

of PP2A is evident from the marked decrease in the ratio

between methylated PP2A and demethylated PP2A in the
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Figure 1. Comparison of LCMT-1 expression in Parkinson disease (PD), dementia with Lewy bodies (DLB), and Control brains. Tissue sections

from the substantia nigra pars compacta (A–D) and middle frontal gyrus of the cerebral cortex (E–H) were immunohistochemically stained for

LCMT-1. (A–C) Representative images of LCMT-1 immunoreactivity in the substantia nigra. (D) Optical density values for LCMT-1 staining intensity

in the substantia nigra normalized against the number of neuromelanin-containing neurons for a sample size of eight in each group. (E–G)

Representative images of LCMT-1 immunoreactivity in the cortex. (H) Optical density values for LCMT-1 staining intensity in the cortex (n = 8 in

each group.) ** ANOVA P < 0.01; **** P < 0.0001 compared to Controls. Scale bar = 100 lm.
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Figure 2. Comparison of PME-1 expression in Parkinson disease (PD), dementia with Lewy bodies (DLB), and Control brains. Tissue sections from

the substantia nigra (A–D) and middle frontal gyrus of the cerebral cortex (E–H) were immunohistochemically stained for PME-1. (A–C)

Representative images of PME-1 immunoreactivity in the substantia nigra. (D) Optical density values for PME-1 staining intensity in the nigra,

normalized against the number of neuromelanin-containing neurons, in Controls (n = 8), PD (n = 7), and DLB (n = 8). ** ANOVA P < 0.01

compared to Controls. (E–G) Representative images of PME-1 immunoreactivity in the cortex. (H) Optical density values for PME-1 staining

intensity in the cortex (n = 8 in each group.) None of the differences were significant. Scale bar = 100 lm.

ª 2016 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 773

H.-J. Park et al. Dysregulation of PP2A in PD and DLB



SN in both PD and DLB brains (Fig. 3I). Interestingly, a

case with PD and homozygous N370S GBA mutation had

the lowest level of methylated PP2A. However, the small

numbers of cases analyzed in this study preclude making

conclusions about a possible link between genetic back-

ground and PP2A dysregulation.

In frontal cortical tissue, the decline in methyl-PP2A

expression was significant only in DLB brains but not in

PD brains (Fig. 4A–D). The immunoreactive signal of

methyl-PP2A was decreased by 31% in DLB (P < 0.05),

but not significantly in PD (P = 0.18) compared to Con-

trols. Demethylated PP2A, on the other hand, was

increased in PD cortex by 147% (P < 0.01) and not in

DLB (P = 0.34) (Fig. 4E–H). Similar trends were found

with the ratios of methyl-PP2A and demethyl-PP2A to

total PP2A (Fig. 4D, H). As a result, the ratio of methyl-

PP2A over demethyl-PP2A was significantly decreased in

both PD (67%, P < 0.0001) and DLB cortices (57%,

P < 0.0001) (Fig. 4I). No changes were noted in total

PP2A or total B55a in either disease condition compared

to Controls. These findings suggest that there is propor-

tionately less enzymatically active methylated PP2A rela-

tive to the inactive demethylated form in cortical tissue of

both advanced PD and DLB.
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Figure 3. Immunoreactivity patterns of methylated-PP2A, demethylated-PP2A, total PP2A, and total B55a subunit in the substantia nigra of

Parkinson disease (PD), dementia with Lewy bodies (DLB), and Control brains. Tissue sections from the substantia nigra were

immunohistochemically stained using antibodies against methylated-PP2A (6A3), demethylated-PP2A (1D6), total PP2A (06-222), and total B55a

subunit (2G9). (A–C) Representative images of methylated-PP2A immunoreactivity. (D) Optical density values for methylated-PP2A staining

intensity (white bars) and its ratio to total PP2A (black bars) in Controls (n = 7), PD (n = 6), and DLB (n = 8) brains. (E–G) Representative

images of demethylated-PP2A immunoreactivity. (H) Optical density values for demethylated-PP2A staining intensity (white bars) and its ratio to

total PP2A (black bars) for a sample size of 8 in each group. (I) Ratio between methylated-PP2A and demethylated-PP2A for Controls (n = 7),

PD (n = 6), and DLB (n = 8) brains. (J–L) Representative images of total-PP2A immunoreactivity. (M) Optical density values for total PP2A

staining intensity for Controls (n = 7), PD (n = 6), and DLB (n = 7). (N–P) Representative images of total B55a immunoreactivity. Q, Optical

density values for total Ba staining intensity for Controls (n = 8), PD (n = 7), and DLB (n = 8) brains. All optical density values in the SN were

normalized against the number of neuromelanin-containing neurons, **ANOVA P < 0.01; ***P < 0.001; ****P < 0.0001 compared to

Controls. Scale bar = 100 lm.
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Discussion

This study demonstrates that in the brains of individuals

with the a-synucleinopathies PD and DLB, PP2A is in a

state that does not favor its assembly into an enzymati-

cally active AB55aC heterotrimeric form. Since the main

dephosphorylating enzyme of a-synuclein is the B55a
containing heterotrimeric isoform of PP2A,13 and methy-

lation of the C subunit of PP2A enhances the incorpora-

tion of the regulatory B55a subunit into the catalytically

active holoenzyme,3–5 the markedly decreased expression

of the methylating enzyme LCMT-1 in these conditions,

and increased expression of the demethylating enzyme

PME-1, lead to a striking decrease in the methylated form

of PP2A. These dysregulatory changes are not only

particularly prominent in the substantia nigra pars com-

pacta but also present in the cortex.

The impact of these maladaptive changes in the brain

is profound considering that PP2A is the master regulator

of the cellular phospho-regulatory network and plays key

roles in regulating cytoskeletal integrity and signal trans-

duction.26–28 Considering the deleterious consequences of

a dysfunctional PP2A, it is unlikely that the changes

observed in these postmortem brain analyses represent a

protective effect in surviving neurons. In relation to a-
synucleinopathies in particular, PP2A catalyzes the

dephosphorylation of phospho-Ser129 a-synuclein, and the

methylation state of the PP2A C subunit regulates this

activity.13 Accordingly, the finding of decreased PP2A

methylation in this study provides a molecular

Figure 4. Immunoreactivity patterns of methylated-PP2A, demethylated-PP2A, total PP2A, and total B55a subunit in the cortex of Parkinson

disease (PD), dementia with Lewy bodies (DLB), and Control brains. Tissue sections from the middle frontal gyrus of the cerebral cortex were

immunohistochemically stained using antibodies against methylated-PP2A (6A3), demethylated-PP2A (1D6), total PP2A (06-222), and total B55a

(2G9). (A–C) Representative images of methylated-PP2A immunoreactivity. (D) Optical density values for methylated-PP2A staining intensity (white

bars) and its ratio to total PP2A (black bars) (n = 8 in each group.) (E–G) Representative images of demethylated-PP2A immunoreactivity. (H)

Optical density values for demethylated-PP2A staining intensity (white bars) and its ratio to total PP2A (black bars). (I) Ratio between methylated-

PP2A and demethylated-PP2A. (J–L) Representative images of total-PP2A immunoreactivity. (M) Optical density values for total PP2A staining

intensity. (N–P) Representative images of total Ba immunoreactivity. (Q) Optical density values for total B55a staining intensity. For all panels,

n = 8 in each group. * ANOVA P < 0.05; ** P < 0.01; **** P < 0.0001 different from Controls. Scale bar = 100 lm.
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mechanism for the reduced PP2A activity reported in a-
synucleinopathies 16 and is likely a significant contributor

to the hyperphosphorylation of aggregated a-synuclein in

these disorders.10,29

The striking association between decreased levels of

PP2A methylation and decreased levels of LCMT-1 sug-

gests that a primary regulatory locus for PP2A methyla-

tion is LCMT-1. In assessing the regulatory parameters

that might control PP2A carboxyl methylation in the

CNS, there has been a focus on factors that underlie

methylation metabolism such as levels of the methyl

donor, S-adenosylmethionine (SAM), the competitive

inhibitor, S-adenosyl homocysteine (SAH), or the methy-

lation cycle intermediate homocysteine. Accordingly, there

is considerable evidence that SAM and SAH levels play a

substantial role in regulating PP2A.30–34 Conditions of

methylation and one carbon stress have been shown to

cause DNA hypomethylation at loci that appear to con-

tribute to the pathogenesis of PD.35–37 Similar epigenetic

mechanisms may function directly or indirectly to reduce

the expression of LCMT-1 and increase the expression of

PME-1. This might provide a transcriptional mechanism

to enforce the regulatory consequences of one-carbon/

methylation stress on PP2A activity, and at the same

time, conserve methyl groups under conditions of methyl

deficiency. In this regard, it is worth noting that L-dopa

therapy appears to exacerbate methylation deficiencies

and results in hyperhomocysteinemia due to the action of

catechol-O-methyl transferase (COMT).38,39

Considerable evidence suggests that oxidative stress

plays a critical role in the pathogenesis of PD 40 and

DLB.41 Evidence has also been reported that PP2A phos-

phatase activity is sensitive to oxidative stress,42 and this

sensitivity is proposed to be mediated by oxidation of a

pair of vicinal cysteines located near the phosphatase

active site of the C subunit.43 Additionally, PP2A oxida-

tion by exposure to micromolar levels of hydrogen perox-

ide has been shown to completely block its methylation

by LCMT-1.44 Furthermore, the X-ray crystal structure of

a complex between LCMT-1 and PP2A supports the

notion that the formation of a disulfide crosslink between

these cysteine residues might preclude formation of a

productive LCMT-1-PP2A complex and, thereby, block

the methyltransferase activity of LCMT-1.44 Thus, the

oxidative stress environment in a-synucleinopathies may

contribute to the decreased methylation of PP2A and its

activity.

Besides the mechanisms that can reduce PP2A methyla-

tion, several additional factors would be expected to

contribute to the state of PP2A dysregulation in a-synu-
cleinopathies. Pathologic a-synuclein accumulation itself

may be an inhibitor of PP2A activity resulting in a

vicious cycle exacerbating the hyperphosphorylation and

aggregation of pathogenic proteins including a-synuclein
and tau in Lewy body disease.10,45 Overexpression of a-
synuclein, particularly its A53T mutant which causes

dominantly inherited PD and dementia, increases intracel-

lular levels of reactive oxygen species in SH-SY5Y neurob-

lastoma cells ,46 contributing to oxidative stress-mediated

dysregulation of PP2A.42,44 Accordingly, A53T-mutant

a-synuclein reportedly reduces PP2A activity more than

the wild-type isoform does.47 And in the rat striatum,

a-synuclein overexpression using viral vector-mediated

gene transfer results in decreased expression of PP2A B

and C subunits as well as decreased PP2A activity. This

effect is associated with increased a-synuclein phosphory-

lation and aggregation as well as neuronal cell death and

inflammation.48 Interestingly, parkin, which is linked to

recessively inherited PD due to loss of function muta-

tions, reportedly prevents a-synuclein-mediated reduction

in PP2A expression and activity and mitigates the pathol-

ogy induced by a-synculein.48 The negative impact of

impaired PP2A activity is also exerted on parkin func-

tioning as well contributing to neuronal dyshomeostasis.

Inhibition of PP2A with okadaic acid in cultured primary

neurons reduces parkin expression level and K48-linked

polyubiquitination, which is implicated in parkin-

mediated mitophagy, suggesting that reduced PP2A

activity impairs the machinery necessary for mitophagy

leading to the accumulation of damaged mitochondria.49

Another mechanism through which a-synuclein accu-

mulation leads to impaired PP2A activity is through the

lysosomal enzyme glucocerebrosidase (GCase), which has

strong genetic link to PD and is decreased in sporadic PD

brains.50,51 In this regard, accumulation of oligomeric and

phosphorylated a-synuclein with age in the brains of

cynomolgus monkeys is associated with decreased expres-

sion and activity of GCase, as well as reduced activity of

PP2A particularly in brain regions that are susceptible to

a-synucleinopathy-related neurodegeneration. This inverse

association between GCase activity, a-synuclein phospho-

rylation, and PP2A activity is also demonstrated in cul-

tured neuronal cells, whereby inhibition of GCase activity

leads to increased a-synuclein phosphorylation and

reduced methylated PP2A levels and activity.52,53 Inhibi-

tion of autophagy due to loss of GCase function is also

associated with inactivation of PP2A,53 while activation of

autophagy with the mTOR inhibitor rapamycin or met-

formin stimulates PP2A and reduces a-synuclein phos-

phorylation in neuronal cells.54–56 GCase dysfunction may

reduce PP2A activity through impaired lysosomal func-

tion and consequent a-synuclein accumulation. In addi-

tion, GCase can also modulate PP2A directly through the

product of its enzymatic activity, ceramide, which is an

activator of PP2A 57,58 and of autophagy.53 Thus, a reduc-

tion in GCase activity decreases the production of
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ceramide leading to reduced PP2A activity. This may

explain why accumulation of a-synuclein in GCase

mutants can be reversed by ceramide.53

The present findings point to parallels in the dysregula-

tion of PP2A, and in particular its methylation state,

between a-synucleinopathies and Alzheimer’s disease.34

Decreased phosphatase activity toward abnormally phos-

phorylated tau had been recognized in AD brains.59 Evi-

dence for the mechanism of this decrease in phosphatase

activity comes from the finding that LCMT-1 is decreased

in AD brains, associated with decreased levels of methy-

lated PP2A, and closely matching tau pathology.17 In

addition, levels of Ba containing PP2A critical for regulat-

ing tau 60 are decreased in tangle-bearing neurons corre-

lating with increased tau pathology.18 And the sensitivity

to exogenously administered Ab oligomers is reduced in

the brains of transgenic animals overexpressing LCMT-1

and exacerbated in mice overexpressing PME-1.61 In this

study, although DLB cases have more advanced concomi-

tant AD-like pathology than PD cases (Table 1), the

observation that indices of PP2A dysregulation in the cor-

tex are not worse in DLB compared to PD suggests that

a-synucleinopathy is the primary driver of PP2A dysregu-

lation in these two conditions. The finding that down-

regulation of LCMT-1 and changes in PP2A methylation

are more prominent in the SN compared to the cortex in

PD and DLB supports this notion and may be due to

greater oxidative stress environment in the SN. Neverthe-

less, the contribution of concomitant AD pathology to

these changes cannot be entirely excluded. Among the

neurobiological consequences of altered LCMT-1 expres-

sion and PP2A methylation that relate to neurodegenera-

tive diseases is neuritogenesis. Experimentally, in cultured

neuroblastoma cells, enhanced expression of LCMT-1

increases methylated C and Ba levels and promotes neuri-

togenesis.62 These findings collectively suggest a global

role of methylated PP2A in regulating brain protein

homeostasis and neuronal survival in neurodegenerative

diseases.

The above findings from postmortem brain analysis of

PD and DLB patients suggest that efforts to enhance

PP2A activity are a plausible therapeutic strategy in order

to mitigate the neuropathology of a-synucleinopathies.
The ability of EHT, which prevents the demethylation of

PP2A, in reducing a-synuclein phosphorylation and

aggregation associated with improved neuropathological

abnormalities and behavioral deficits in a-synuclein trans-

genic mice 13 supports this conclusion. Enhancing PP2A

activity has also been shown to mitigate the pathology in

an AD model as well: EHT treatment resulted in substan-

tial amelioration of AD-like pathologies such as tau

hyperphosphorylation, elevated amyloid-b levels, and cog-

nitive impairment in a rat model of AD generated by

viral vector-mediated expression of the PP2A endogenous

inhibitor I2PP2A, or SET protein, in the brain.19 And in

aged mice and in transgenic tauopathy models of AD, the

use of another enhancer of PP2A activity, sodium selenite,

has also been demonstrated to reduce tau hyperphospho-

rylation.63,64 Thus, PP2A modulation may provide a com-

mon approach for treating neurodegenerative

proteinopathies associated with hyperphosphorylated

pathogenic proteins.
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